

M117/MTS01 I2C 协议 FAQ

敏源传感高精度数字温度芯片 M117、MTS01 I2C 协议常见问题解答如下(以下简称温度 IC)。除问题第 16 外,其他均可同时适用于支持 I2C 协议的 M117、MTS01 全系列温度芯片。

1.低功耗如何实现?

建议温度 IC 的供电端 VDD 连接到控制端的 GPIO, 其它不需要使用的端口根据手册说明悬空、接地处理或通过上拉电阻连接到 VDD。

Alert 端不使用时悬空, nRESET 不使用时悬空或通过上拉电阻连接到 VDD。

2.采样频率是否可设置?如何设置?

周期性采样模式采样频率可通过配置寄存器的 MPS(Measure Per Second)位设置, 有 0.5, 1, 2, 4 和 10 次/秒 5 种选择, 也可以上位机通过不同延时单次测量实现。

3.是通过软件配置温度 IC 本身的转换时间 4ms/5.5ms/10.5ms 吗?

是的。温度 IC 内部有一个配置寄存器,通过重复性位域设置。重复性越高,精度越高,但转换时间也越长。对于体温测量,建议选择高重复性设置,对应的转换时间是 10.5ms。详细配置说明见手册介绍。

4.测试温度响应时间需要多长?

温度 IC 本身的转换时间可配置为 4ms/5.5ms/10.5ms, 时间越长, 内部滤波效果越好, 精度越高。所以最终产品热稳定时间的关键在导热设计。

5.采样频率能设置 0.01Hz, 10Hz 和 20Hz 吗?

能设置 10Hz,不能设置 0.01Hz 和 20Hz。但可以用单次测量命令,用软件定时实现,极限频率更高。

6.需要 ALERT 引脚接至 GPIO 引脚来监控吗?

可以用也可以不用,如果希望一旦报警发生时唤醒 MCU 或者控制设备启动,则可以使用 Alert。否则温度 IC 内部有状态寄存器,其中报警状态标志位指示是否有报警发生,主机可 以通过查询该寄存器了解是否有报警发生。

7.M117 的 Alert 引脚接法与 SDA/SCL 是否相同?

Alert 是推挽输出 (Push-pull), 不用时悬空即可。

8.关于地平面不能公用,PCB 是否可以这样设计,M117 单独一片大地,板子其它电路一片大地,两个地通过细线连接在一起?

是的。这样做的目的是让两个部分热隔离。

9.针对 M117 导热焊盘的导热设计,有什么样的建议?

电路设计时,导热焊盘悬空或接地。若贴在 PCB 上,推荐导热焊盘接地。

若导热焊盘贴金属片用于接触式体温检测,则推荐不接地,但是要保证导热焊盘和背面金属片焊接一侧的焊盘保持连通,才可以有效地快速导热。

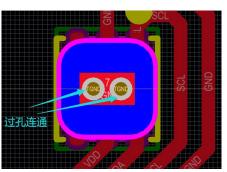


图 1: 导热焊盘设计建议

10.不设计成 FPC 软排线,直接做在主板上,产品金属贴通过导热膏贴在芯片上是否可以?

可以的,我们也有小模组的产品及参考设计,如下图所示:

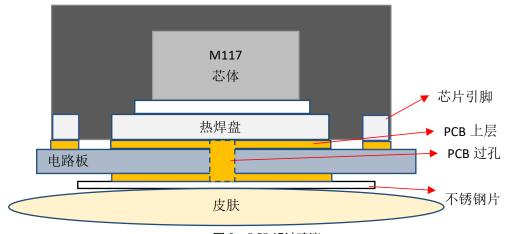


图 2: PCB 设计建议

3

直接做在主板上,但是需要保证 M117 和主板电路保证一定的距离,并且 M117 与主板不共用地平面(孤岛),并且尽可能做一些导热/散热等。

11.导热膏比较多是否会影响测温准确性?是否有参考型号?

相邻材料之间用导热膏不宜过多。用导热膏填塞缝隙的目的是排除之间的空气(热导率很低),过多的导热膏会增加热阻。建议询问粉体填充密度高的导热胶的厂家,导热系数在 5W/m.K以上。

12.导热胶有没有推荐的厂家?

填充缝隙的导热材料主要有三种:导热硅脂,导热硅胶和高分子导热胶。导热硅脂热导率高,但没有粘性,也不能固化。导热硅胶导热性能稍差,但可以用于结构粘合。导热高分子热传导性能优越,但价格昂贵。可以通过道康宁了解一下这方面的知识。

13.有没有导热设计的规范文档?

导热设计和产品 ID/MD 设计很相关,如果了解具体信息我们可以辅助。

14.读温经常出现异常值 (对应 39.996/40.00), 如何避免?

首先确认第一次发送从机地址时从机是否正常应答。若出现未应答现象有三种可能:

- 1) 硬件通信出现问题, 如虚焊短路等;
- 2) 芯片进入低功耗模式,唤醒未成功导致;
- 3) 硬件连接正常,从机有正确响应,读取数据异常,可能是由于本身时钟建立不是很友好或者时序不稳定导致(从波形上看实际的时钟/数据不是理想波形,出现噪声等)。

推荐加入 CRC 校验机制,确保出现问题时可以先排查是硬件问题还是软件问题导致。

如果 CRC 校验不通过,优先考虑时序优化是否完善。

若硬件出现问题, 出现 SDA 断路, 读温易出现 39.996 (对应原始数据 0xFFFF)。

出现短路, 若 SCL 与 GND 短路, 读温易出现 40.00 (对应原始数据 0x0000)。

具体检测机制详见例程驱动。

15.M117 芯片 IIC 接口通信时出现从机无应答现象如何解决?

推荐首先确认硬件连接无误,逻辑分析仪/示波器可以抓取到芯片 SDA/SCL 上已收到正确的主机时序,在第一次发送从机地址后从机未在第 9bit 应答,初步怀疑是芯片处于低功耗睡眠模式未被唤醒导致;

● 若基于软件 IIC 构造时序,建议同时做到两点:

(1) 增大正常通信的 t_{HD;STA} 参数,即从 Start 到 SCL 首次拉低的时间长度(定义可以参见产品手册中 I2C 总线时序参数图),在不同 VDD 电压下建议配置为不低于表 1 给出的数值:

VDD (V)	5	4	3	2	1.8
t _{HD;STA MIN} (us)	30	35	50	60	150

表 1: 建议配置 tHD;STA 的最小值

(2) 在正式发送 I2C 指令前,循环 5 次执行图 3 所示的 dummy 序列,具体代码见图 4。请注意,在 dummy 序列期间,SDA 首次拉低的时间长度需要依照表 1 来配置。

图 3:基于软件 I2C 的 dummy 序列波形图

void dummy_start(void) //-----// i2c_set_scl(); i2c_clear_sda(); //-----// Delay_us(150); //-----// i2c_set_sda(); Delay_us(10); i2c_clear_scl(); Delay_us(20); //-----5-----// i2c_clear_sda(); Delay_us(25); //-----// i2c_set_scl(); Delay_us(10); i2c_set_sda(); //----// Delay_us(15); //-----8-----//

图 4: 基于软件 I2C 的 dummy 序列代码

- 若基于硬件 IIC 通信,在无法更改 t_{HD:STA}参数的前提下,建议同时做到两点:
- (1) 增大正常通信的 t_{START-DELAY} 参数,即从 SCL 首次拉低到 SCL 首次拉高的延时长度,在不同 VDD 电压下建议配置为不低于表 2 给出的数值:

VDD (V)	5	4	3	2	1.8
t _{START-DELAY MIN} (us)	30	35	50	60	150

表 2: 建议配置 tSTART-DELAY 的最小值

(2) 在正式发送 I2C 指令前,循环 5 次执行图 5 所示的基于"Start+0x7E 数据(左移读写位后实际发送 0xFC)+Stop"的 dummy序列,具体代码见图 6。该序列仅用于唤醒从机,但数据不会被从机响应。请注意,在 dummy序列期间,从 SCL 首次拉低到 SCL 首次拉高的延时长度需要依照表 2 来配置。

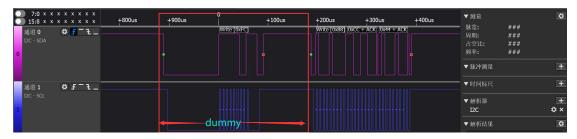


图 5:基于硬件 I2C 的 dummy 序列波形图

```
void dummy(void)
{
    int timeout;

I2C_GenerateSTART(I2C2, ENABLE); // 发送起始位
    Delay_us(150);
    timeout=10000;
    while(!!2C_CheckEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT)) //EV5,主模式
    {
        timeout--;
        if(timeout==0)
        {break;}
    }

I2C_Send7bitAddress(I2C2, 0xFC, I2C_Direction_Transmitter); //发送器件地址(写)
    Delay_us(200);

I2C_GenerateSTOP(I2C2, ENABLE); //发送停止位
    Delay_us(200);
}
```


图 6: 基于硬件 I2C 的 dummy 序列代码

● 其他说明:

- (1) 上述 dummy 序列中的 delay_us 建议按照参考例程添加,若只能使用硬件 IIC 且并未配置其他延时函数的话可考虑省去。
- (2) 无论是硬件 IIC 还是软件 IIC, 我们都建议按照参考例程加入用于帮助从机唤醒的 dummy 序列, 且最好执行至少 5 次再正式进行数据通信(Start-发送从机地址+ACK-发送指令+ACK....-Stop)。在添加 dummy 序列后, 当发送从机地址可以收到应答, 即可以进行后续正常读写操作。

16.多个相同地址 M117 或 MTS01 需要一起使用,如何实现?

1) M117 地址固定为 0x44,多个相同地址 M117 需要一起使用时,可通过共用 I2C 时钟线(SCL),多个数据线(SDA)来实现,具体如图 7 所示。

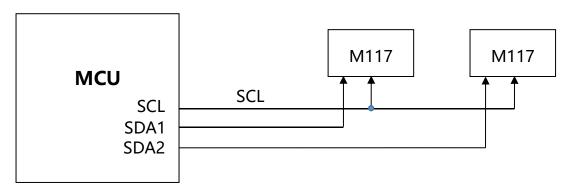


图 7: I2C 多个 M117 应用示意图

2) MTS01 地址可根据 addr 引脚选择 0x44/0x45, 若需要同时驱动两颗 MTS01 芯片, 直接将两颗芯片 addr 一个接高一个接低即可, 具体如图 8 所示。

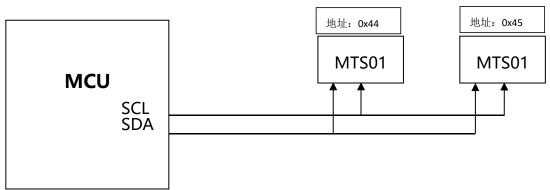


图 8: 两个不同地址 MTS01 应用示意图

3) 若需要同时驱动多个 MTS01,建议根据实际驱动 IC 的数量对半进行地址设置 (一半地址 0x44;一半地址 0x45),每两个不同地址的温度 IC 的 SDA 串联接入 MCU 一个端口,这样可以最大化减小 IO 口的资源占用,具体如图 9 所示。

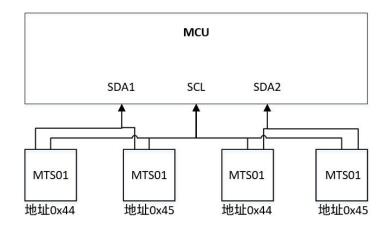


图 9: I2C 多个 MTS01 应用示意图

同时,如上应用方式,M117/MTS01可以混用。

17.设置为周期测量模式,如果在转换过程中读数,结果是什么?

如果在转换过程中读数,读到的是上一次转换结果。

18.电路设计时 Pin 4 (NC) 不悬空会造成漏电流吗?

不会。Pin 4 在封装时没有接线。